Centrum voor Medico-Legale Psychologie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Conversietabel normen ... | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CONVERSION TABLE FOR DERIVED SCORESAdapted from Howard B. Lyman, Test Scores and What They Mean, Second Edition. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1971
Wij hebben een programma ontwikkeld dat voor u bij een gekend gemiddelde en een gekende standaarddeviatie van een ruwe score de volgende omgezette scores aangeeft:
Neem met ons contact op en we maken uw berekeningen. Contact Er bestaat een Percentiel naar Z-score-calculator en een Z-score naar Percentiel-calculator, die we wel handig vinden.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CMLP © 2008 | Home • Company • Onze diensten • Policies • FAQs • Contact • Nieuwsbrief • Vacatures | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
Voor wie meer in detail IQ's wil plaatsen ten overstaan van de normaalspreiding is onderstaande informatie relevant:
These are IQs, their percentiles, and rarity on a 15 SD (e.g. Wechsler) and 16 SD (e.g. Stanford-Binet) scale. They were calculated using the NORMDIST function in Excel. The number of decimal places for the rarity was varied in the hope it might be useful. You can see why presently nobody should be able to get a deviation IQ higher than 195 (or 201 on the 16 SD scale). There are not enough people in the world to 'beat'. Note that rarities given are of people that have a certain IQ or higher. Some people might find it more useful to know the rarity of people that have a certain IQ or lower. In that case use this example as a guide: If you want to know how many people have IQs of 84 or lower, look at the rarity of people that have an IQ of 116 or higher. (100 - 84 = 16. 100 + 16 = 116).
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
202
|
99.9999999995%
|
190,057,377,928 |
99.9999999908%
|
10,881,440,294 |
201
|
99.9999999992%
|
119,937,672,336 |
99.9999999862%
|
7,252,401,045 |
200
|
99.9999999987%
|
76,017,176,740 |
99.9999999794%
|
4,852,159,346 |
199
|
99.9999999979%
|
48,390,420,202 |
99.9999999693%
|
3,258,706,819 |
198
|
99.9999999968%
|
30,938,221,975 |
99.9999999545%
|
2,196,908,409 |
197
|
99.9999999950%
|
19,866,426,228 |
99.9999999327%
|
1,486,736,899 |
196
|
99.9999999922%
|
12,812,462,045 |
99.9999999010%
|
1,009,976,678 |
195
|
99.9999999880%
|
8,299,126,114 |
99.9999998548%
|
688,720,101 |
194
|
99.9999999815%
|
5,399,067,340 |
99.9999997879%
|
471,441,334 |
193
|
99.9999999717%
|
3,527,693,270 |
99.9999996913%
|
323,940,499 |
192
|
99.9999999568%
|
2,314,980,850 |
99.9999995524%
|
223,436,817 |
191
|
99.9999999345%
|
1,525,765,721 |
99.9999993536%
|
154,701,783 |
190
|
99.9999999010%
|
1,009,976,678 |
99.9999990699%
|
107,519,234 |
189
|
99.9999998511%
|
671,455,130 |
99.9999986669%
|
75,011,253 |
188
|
99.9999997770%
|
448,336,263 |
99.9999980964%
|
52,530,944 |
187
|
99.9999996674%
|
300,656,786 |
99.9999972920%
|
36,927,646 |
186
|
99.9999995062%
|
202,496,482 |
99.9999961624%
|
26,057,620 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
185
|
99.9999992699%
|
136,975,305 |
99.9999945820%
|
18,457,107 |
184
|
99.9999989254%
|
93,056,001 |
99.9999923799%
|
13,123,126 |
183
|
99.9999984250%
|
63,492,548 |
99.9999893231%
|
9,366,012 |
182
|
99.9999977016%
|
43,508,721 |
99.9999850966%
|
6,709,882 |
181
|
99.9999966604%
|
29,943,596 |
99.9999792755%
|
4,825,216 |
180
|
99.9999951684%
|
20,696,863 |
99.9999712895%
|
3,483,046 |
179
|
99.9999930398%
|
14,367,357 |
99.9999603760%
|
2,523,720 |
178
|
99.9999900166%
|
10,016,587 |
99.9999455198%
|
1,835,530 |
177
|
99.9999857417%
|
7,013,455 |
99.9999253755%
|
1,340,043 |
176
|
99.9999797237%
|
4,931,877 |
99.9998981672%
|
982,001 |
175
|
99.9999712895%
|
3,483,046 |
99.9998615605%
|
722,337 |
174
|
99.9999595211%
|
2,470,424 |
99.9998125011%
|
533,337 |
173
|
99.9999431733%
|
1,759,737 |
99.9997470088%
|
395,271 |
172
|
99.9999205647%
|
1,258,887 |
99.9996599197%
|
294,048 |
171
|
99.9998894360%
|
904,454 |
99.9995445629%
|
219,569 |
170
|
99.9998467663%
|
652,598 |
99.9993923584%
|
164,571 |
169
|
99.9997885357%
|
472,893 |
99.9991923180%
|
123,811 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
168
|
99.9997094213%
|
344,141 |
99.9989304314%
|
93,496 |
167
|
99.9996024097%
|
251,515 |
99.9985889129%
|
70,867 |
166
|
99.9994583047%
|
184,606 |
99.9981452833%
|
53,917 |
165
|
99.9992651083%
|
136,074 |
99.9975712563%
|
41,174 |
164
|
99.9990072440%
|
100,730 |
99.9968313965%
|
31,560 |
163
|
99.9986645903%
|
74,883 |
99.9958815099%
|
24,281 |
162
|
99.9982112841%
|
55,906 |
99.9946667250%
|
18,750 |
161
|
99.9976142490%
|
41,916 |
99.9931192192%
|
14,533 |
160
|
99.9968313965%
|
31,560 |
99.9911555410%
|
11,307 |
159
|
99.9958094411%
|
23,863 |
99.9886734737%
|
8,829 |
158
|
99.9944812644%
|
18,120 |
99.9855483883%
|
6,920 |
157
|
99.9927627566%
|
13,817 |
99.9816290270%
|
5,443 |
156
|
99.9905490555%
|
10,581 |
99.9767326626%
|
4,298 |
155
|
99.9877101029%
|
8,137 |
99.9706395788%
|
3,406 |
154
|
99.9840854286%
|
6,284 |
99.9630868216%
|
2,709 |
153
|
99.9794780761%
|
4,873 |
99.9537611786%
|
2,163 |
152
|
99.9736475807%
|
3,795 |
99.9422913506%
|
1,733 |
151
|
99.9663019177%
|
2,968 |
99.9282392963%
|
1,394 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
150
|
99.9570883466%
|
2,330 |
99.9110907427%
|
1,125 |
149
|
99.9455830880%
|
1,838 |
99.8902448799%
|
911 |
148
|
99.9312797919%
|
1,455 |
99.8650032777%
|
741 |
147
|
99.9135767802%
|
1,157 |
99.8345580959%
|
604 |
146
|
99.8917630764%
|
924 |
99.7979796890%
|
495 |
145
|
99.8650032777%
|
741 |
99.7542037453%
|
407 |
144
|
99.8323213712%
|
596 |
99.7020181412%
|
336 |
143
|
99.7925836483%
|
482 |
99.6400497338%
|
278 |
142
|
99.7444809358%
|
391 |
99.5667513617%
|
231 |
141
|
99.6865104294%
|
319 |
99.4803893690%
|
192 |
140
|
99.6169574875%
|
261 |
99.3790320141%
|
161 |
139
|
99.5338778217%
|
215 |
99.2605391688%
|
135 |
138
|
99.4350805958%
|
177 |
99.1225537500%
|
114 |
137
|
99.3181130218%
|
147 |
98.9624953632%
|
96 |
136
|
99.1802471131%
|
122 |
98.7775566587%
|
82 |
135
|
99.0184693146%
|
102 |
98.5647029151%
|
70 |
134
|
98.8294737819%
|
85 |
98.3206753694%
|
60 |
133
|
98.6096601092%
|
72 |
98.0419987942%
|
51 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
132
|
98.3551363216%
|
61 |
97.7249937964%
|
44 |
131
|
98.0617279292%
|
52 |
97.3657942589%
|
38 |
130
|
97.7249937964%
|
44 |
96.9603702812%
|
33 |
129
|
97.3402495072%
|
38 |
96.5045568849%
|
29 |
128
|
96.9025987934%
|
32 |
95.9940886433%
|
25 |
127
|
96.4069734486%
|
28 |
95.4246402670%
|
22 |
126
|
95.8481819706%
|
24 |
94.7918730337%
|
19 |
125
|
95.2209669590%
|
21 |
94.0914867949%
|
17 |
124
|
94.5200710546%
|
18 |
93.3192771207%
|
15 |
123
|
93.7403109348%
|
16 |
92.4711969715%
|
13 |
122
|
92.8766585983%
|
14 |
91.5434221090%
|
12 |
121
|
91.9243288744%
|
12 |
90.5324192858%
|
11 |
120
|
90.8788718026%
|
11 |
89.4350160914%
|
9 |
119
|
89.7362682436%
|
10 |
88.2484711894%
|
9 |
118
|
88.4930268282%
|
9 |
86.9705435536%
|
8 |
117
|
87.1462801289%
|
8 |
85.5995592220%
|
7 |
116
|
85.6938777630%
|
7 |
84.1344740241%
|
6 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
115
|
84.1344740241%
|
6.30297414356 |
82.5749307167%
|
5.7388581000 |
114
|
82.4676075848%
|
5.70372814115 |
80.9213089868%
|
5.2414497373 |
113
|
80.6937708458%
|
5.17967538878 |
79.1747668425%
|
4.8018670064 |
112
|
78.8144666062%
|
4.72020213705 |
77.3372720270%
|
4.4125314534 |
111
|
76.8322499196%
|
4.31634490415 |
75.4116222443%
|
4.0669620824 |
110
|
74.7507532660%
|
3.96051419092 |
73.4014531849%
|
3.7596038872 |
109
|
72.5746935061%
|
3.64626736341 |
71.3112335745%
|
3.4856849025 |
108
|
70.3098594977%
|
3.36812148102 |
69.1462467364%
|
3.2410967685 |
107
|
67.9630797074%
|
3.12139865776 |
66.9125584538%
|
3.0222947235 |
106
|
65.5421696587%
|
2.90209798497 |
64.6169712244%
|
2.8262136810 |
105
|
63.0558595794%
|
2.70678919205 |
62.2669653200%
|
2.6501976543 |
104
|
60.5137031432%
|
2.53252414027 |
59.8706273779%
|
2.4919402788 |
103
|
57.9259687167%
|
2.37676298063 |
57.4365675495%
|
2.3494345790 |
102
|
55.3035150084%
|
2.23731239758 |
54.9738265155%
|
2.2209304558 |
101
|
52.6576534466%
|
2.11227383685 |
52.4917739192%
|
2.1048986302 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
100
|
49.9999999782%
|
1.99999999913 |
49.9999999782%
|
1.9999999991 |
99
|
47.3423465534%
|
1.89905917668 |
47.5082260808%
|
1.9050604034 |
98
|
44.6964849916%
|
1.80820333002 |
45.0261734845%
|
1.8190474693 |
97
|
42.0740312833%
|
1.72634143572 |
42.5634324505%
|
1.7410511155 |
96
|
39.4862968568%
|
1.65251826951 |
40.1293726221%
|
1.6702681161 |
95
|
36.9441404206%
|
1.58589543727 |
37.7330346800%
|
1.6059880144 |
94
|
34.4578303413%
|
1.52573527121 |
35.3830287756%
|
1.5475810473 |
93
|
32.0369202926%
|
1.47138711828 |
33.0874415462%
|
1.4944877660 |
92
|
29.6901405023%
|
1.42227563409 |
30.8537532636%
|
1.4462100941 |
91
|
27.4253064939%
|
1.37789076562 |
28.6887664255%
|
1.4023036061 |
90
|
25.2492467340%
|
1.33777916116 |
26.5985468151%
|
1.3623708477 |
89
|
23.1677500804%
|
1.30153679093 |
24.5883777557%
|
1.3260555472 |
88
|
21.1855333938%
|
1.26880259813 |
22.6627279730%
|
1.2930375921 |
87
|
19.3062291542%
|
1.23925302972 |
20.8252331575%
|
1.2630286642 |
86
|
17.5323924152%
|
1.21259732068 |
19.0786910132%
|
1.2357684429 |
85
|
15.8655259759%
|
1.18857342558 |
17.4250692833%
|
1.2110213007 |
84
|
14.3061222370%
|
1.16694450771 |
15.8655259759%
|
1.1885734256 |
83
|
12.8537198711%
|
1.14749590978 |
14.4004407780%
|
1.1682303146 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
82
|
11.5069731718%
|
1.13003254137 |
13.0294564464%
|
1.1498145914 |
81
|
10.2637317564%
|
1.11437662784 |
11.7515288106%
|
1.1331641064 |
80
|
9.1211281974%
|
1.10036577278 |
10.5649839086%
|
1.1181302847 |
79
|
8.0756711256%
|
1.08785129274 |
9.4675807142%
|
1.1045766896 |
78
|
7.1233414017%
|
1.07669678808 |
8.4565778910%
|
1.0923777776 |
77
|
6.2596890652%
|
1.06677691809 |
7.5288030285%
|
1.0814178174 |
76
|
5.4799289454%
|
1.05797635237 |
6.6807228793%
|
1.0715899553 |
75
|
4.7790330410%
|
1.05018887325 |
5.9085132051%
|
1.0627954070 |
74
|
4.1518180294%
|
1.04331660699 |
5.2081269663%
|
1.0549427583 |
73
|
3.5930265514%
|
1.03726936365 |
4.5753597330%
|
1.0479473616 |
72
|
3.0974012066%
|
1.03196406748 |
4.0059113567%
|
1.0417308129 |
71
|
2.6597504928%
|
1.02732426212 |
3.4954431151%
|
1.0362204981 |
70
|
2.2750062036%
|
1.02327967611 |
3.0396297188%
|
1.0313491967 |
69
|
1.9382720708%
|
1.01976583639 |
2.6342057411%
|
1.0270547348 |
68
|
1.6448636784%
|
1.01672371917 |
2.2750062036%
|
1.0232796761 |
67
|
1.3903398908%
|
1.01409942889 |
1.9580012058%
|
1.0199710454 |
66
|
1.1705262181%
|
1.01184389811 |
1.6793246306%
|
1.0170800762 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
65
|
0.9815306854%
|
1.00991260208 |
1.4352970849%
|
1.0145619785 |
64
|
0.8197528869%
|
1.00826528377 |
1.2224433413%
|
1.0123757196 |
63
|
0.6818869782%
|
1.006865686 |
1.0375046368%
|
1.0104838164 |
62
|
0.5649194042%
|
1.00568128874 |
0.8774462500%
|
1.0088521352 |
61
|
0.4661221783%
|
1.00468305052 |
0.7394608312%
|
1.0074496959 |
60
|
0.3830425125%
|
1.0038451537 |
0.6209679859%
|
1.0062484809 |
59
|
0.3134895706%
|
1.00314475418 |
0.5196106310%
|
1.0052232469 |
58
|
0.2555190642%
|
1.00256173637 |
0.4332486383%
|
1.0043513385 |
57
|
0.2074163517%
|
1.00207847461 |
0.3599502662%
|
1.0036125059 |
56
|
0.1676786288%
|
1.00167960262 |
0.2979818588%
|
1.0029887244 |
55
|
0.1349967223%
|
1.0013517921 |
0.2457962547%
|
1.0024640190 |
54
|
0.1082369236%
|
1.00108354203 |
0.2020203110%
|
1.0020242926 |
53
|
0.0864232198%
|
1.00086497974 |
0.1654419041%
|
1.0016571607 |
52
|
0.0687202081%
|
1.00068767465 |
0.1349967223%
|
1.0013517921 |
51
|
0.0544169120%
|
1.0005444654 |
0.1097551201%
|
1.0010987571 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
50
|
0.0429116534%
|
1.00042930075 |
0.0889092573%
|
1.0008898838 |
49
|
0.0336980823%
|
1.00033709442 |
0.0717607037%
|
1.0007181224 |
48
|
0.0263524193%
|
1.00026359366 |
0.0577086494%
|
1.0005774197 |
47
|
0.0205219239%
|
1.00020526136 |
0.0462388214%
|
1.0004626021 |
46
|
0.0159145714%
|
1.00015917105 |
0.0369131784%
|
1.0003692681 |
45
|
0.0122898971%
|
1.00012291408 |
0.0293604212%
|
1.0002936904 |
44
|
0.0094509445%
|
1.00009451838 |
0.0232673374%
|
1.0002327275 |
43
|
0.0072372434%
|
1.00007237767 |
0.0183709730%
|
1.0001837435 |
42
|
0.0055187356%
|
1.0000551904 |
0.0144516117%
|
1.0001445370 |
41
|
0.0041905589%
|
1.00004190735 |
0.0113265263%
|
1.0001132781 |
40
|
0.0031686035%
|
1.00003168704 |
0.0088444590%
|
1.0000884524 |
39
|
0.0023857510%
|
1.00002385808 |
0.0068807808%
|
1.0000688125 |
38
|
0.0017887159%
|
1.00001788748 |
0.0053332750%
|
1.0000533356 |
37
|
0.0013354097%
|
1.00001335428 |
0.0041184901%
|
1.0000411866 |
36
|
0.0009927560%
|
1.00000992766 |
0.0031686035%
|
1.0000316870 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
35
|
0.0007348917%
|
1.00000734897 |
0.0024287437%
|
1.0000242880 |
34
|
0.0005416953%
|
1.00000541698 |
0.0018547167%
|
1.0000185475 |
33
|
0.0003975903%
|
1.00000397592 |
0.0014110871%
|
1.0000141111 |
32
|
0.0002905787%
|
1.0000029058 |
0.0010695686%
|
1.0000106958 |
31
|
0.0002114643%
|
1.00000211465 |
0.0008076820%
|
1.0000080769 |
30
|
0.0001532337%
|
1.00000153234 |
0.0006076416%
|
1.0000060765 |
29
|
0.0001105640%
|
1.00000110564 |
0.0004554371%
|
1.0000045544 |
28
|
0.0000794353%
|
1.00000079435 |
0.0003400803%
|
1.0000034008 |
27
|
0.0000568267%
|
1.00000056827 |
0.0002529912%
|
1.0000025299 |
26
|
0.0000404789%
|
1.00000040479 |
0.0001874989%
|
1.0000018750 |
25
|
0.0000287105%
|
1.00000028711 |
0.0001384395%
|
1.0000013844 |
24
|
0.0000202763%
|
1.00000020276 |
0.0001018328%
|
1.0000010183 |
23
|
0.0000142583%
|
1.00000014258 |
0.0000746245%
|
1.0000007462 |
22
|
0.0000099834%
|
1.00000009983 |
0.0000544802%
|
1.0000005448 |
21
|
0.0000069602%
|
1.0000000696 |
0.0000396240%
|
1.0000003962 |
20
|
0.0000048317%
|
1.00000004832 |
0.0000287105%
|
1.0000002871 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
19
|
0.0000033396%
|
1.0000000334 |
0.0000207245%
|
1.0000002072 |
18
|
0.0000022984%
|
1.00000002298 |
0.0000149034%
|
1.0000001490 |
17
|
0.0000015750%
|
1.00000001575 |
0.0000106769%
|
1.0000001068 |
16
|
0.0000010746%
|
1.00000001075 |
0.0000076201%
|
1.0000000762 |
15
|
0.0000007301%
|
1.0000000073 |
0.0000054180%
|
1.0000000542 |
14
|
0.0000004938%
|
1.00000000494 |
0.0000038376%
|
1.0000000384 |
13
|
0.0000003326%
|
1.00000000333 |
0.0000027080%
|
1.0000000271 |
12
|
0.0000002230%
|
1.00000000223 |
0.0000019036%
|
1.0000000190 |
11
|
0.0000001489%
|
1.00000000149 |
0.0000013331%
|
1.0000000133 |
10
|
0.0000000990%
|
1.00000000099 |
0.0000009301%
|
1.0000000093 |
9
|
0.0000000655%
|
1.00000000066 |
0.0000006464%
|
1.0000000065 |
8
|
0.0000000432%
|
1.00000000043 |
0.0000004476%
|
1.0000000045 |
7
|
0.0000000283%
|
1.00000000028 |
0.0000003087%
|
1.0000000031 |
6
|
0.0000000185%
|
1.00000000019 |
0.0000002121%
|
1.0000000021 |
IQ
|
15 SD Percentile
|
Rarity: 1/X |
16 SD Percentile
|
Rarity: 1/X |
5
|
0.0000000120%
|
1.00000000012 |
0.0000001452%
|
1.0000000015 |
4
|
0.0000000078%
|
1.00000000008 |
0.0000000990%
|
1.0000000010 |
3
|
0.0000000050%
|
1.00000000005 |
0.0000000673%
|
1.0000000007 |
2
|
0.0000000032%
|
1.00000000003 |
0.0000000455%
|
1.0000000005 |
1
|
0.0000000021%
|
1.00000000002 |
0.0000000307%
|
1.0000000003 |
deciel | Z-decielgrens | 7 normklasse |
1 | -1,280 | zeer laag |
2 | -0,840 | laag |
3 | -0,525 | beneden gemiddeld |
4 | -0,255 | gemiddeld |
5 | 0,000 | gemiddeld |
6 | 0,255 | gemiddeld |
7 | 0,525 | gemiddeld |
8 | 0,840 | boven gemiddeld |
9 | 1,280 | hoog |
10 | >1,280 | zeer hoog |
De waarden van de decielgrenzen worden dus per normtabel op basis van het
gemiddelde en de standaarddeviatie berekend en in het lijstbestand opgenomen.
Het berekenen van de decielgrenzen heeft als belangrijkste beperking dat er geen
rekening gehouden wordt met de scheefheid van de verdeling.
Bij de stanine (afkorting van "standard nine") worden de scores van de
normgroep in negen klassen verdeeld. Dit gebeurt zodanig dat de stanine nagenoeg
een standaardverdeling heeft met een gemiddelde van 5 en een standaarddeviatie
van 2. Onderstaande tabel geeft de grootte van de stanineklassen en de
vertaalslag naar gangbare normklassen (zie 4.)
Stanine | klassengrootte | 5 normklassen | 7 normklassen |
1 | 4% | zeer laag | zeer laag |
2 | 7% | laag | laag |
3 | 12% | laag | beneden gemiddeld |
4 | 17% | gemiddeld | gemiddeld |
5 | 20% | gemiddeld | gemiddeld |
6 | 17% | gemiddeld | gemiddeld |
7 | 12% | hoog | boven gemiddeld |
8 | 7% | hoog | hoog |
9 | 4% | zeer hoog | zeer hoog |
Voorbeeld van lijsten | Neo |
Guiford's C-schaal (1965) is een uitbreiding van de stanine schaal die gevoeliger is aan de uiteinden van de schaal.
C-schaalsscore | percentiel grenzen | % in interval | com % | percentiel midden waarde | betekenis | 7 normklasse |
10 | 99-100 | 1 | 100 | 99 | extreem hoog | zeer hoog |
9 | 97-98 | 3 | 99 | 97 | zeer hoog | zeer hoog |
8 | 90-96 | 7 | 96 | 93 | hoog | hoog |
7 | 78-89 | 12 | 89 | 82 | boven gemiddeld | boven gemiddeld |
6 | 61-77 | 17 | 77 | 68 | hoog gemiddeld | gemiddeld |
5 | 41-60 | 20 | 60 | 50 | gemiddeld | gemiddeld |
4 | 24-40 | 17 | 40 | 32 | laag gemiddeld | gemiddeld |
3 | 12-23 | 12 | 23 | 18 | onder gemiddeld | onder gemiddeld |
2 | 05-11 | 7 | 11 | 7 | laag | laag |
1 | 02-04 | 3 | 3 | 3 | zeer laag | zeer laag |
0 | 0-1 | 1 | 1 | 1 | extreem laag | zeer laag |
De Tscore is een normscore met gemiddelde 50 en sd 10. Voor interpretatie worden de grensen gehanteerd van gem.+/-1*sd, gem+/-2*sd en gem.+/-3*sd
T-score bovengrens | betekenis | 7 normklasse |
hoger 80 | hoger gem.+3*sd | zeer hoog |
80 | gem.+2*sd | hoog |
70 | gem.+1*sd | boven gemiddeld |
60 | gem. | gemiddeld |
40 | gem.-1*sd | onder gemiddeld |
30 | gem.-2*sd | laag |
kleiner 30 | kleiner gem.-3*sd | zeer laag |
7 normklassen | 5 normklassen | ||
Klasse | Bovengrens | Klassen | Bovengrens |
zeer laag | 5e percentiel | zeer laag | 5e percentiel |
laag | 2e deciel | laag | 2e deciel |
beneden gemiddeld | gemiddelde - een standaardmeetfout | gemiddeld | 8e deciel |
gemiddeld | gemiddelde + een standaardmeetfout | hoog | 95e percentiel |
boven gemiddeld | 8e deciel | zeer hoog | maximale score |
hoog | 95e deciel | ||
zeer hoog | maximale score | ||
Voorbeelden van lijsten | NPV,NMV, SCL90 | UCL |